首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   1篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   7篇
  2013年   2篇
  2012年   8篇
  2011年   13篇
  2010年   2篇
  2009年   6篇
  2008年   5篇
  2007年   5篇
  2006年   6篇
  2005年   1篇
  2004年   4篇
  2003年   7篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1995年   1篇
  1993年   1篇
  1990年   2篇
  1982年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
91.
In a two-stage skin carcinogenesis model, mice initiated with 7,12-dimethylbenz[a]anthracene and promoted with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 12 weeks developed an average of 15.8 skin tumours per mouse with 100% tumour incidence. Topical application of polysaccharides from soybeans fermented with either Phellinus igniarius or Agrocybe cylindracea together with TPA twice weekly for 12 weeks inhibited the number of skin tumours per mouse by 70 or 88%, respectively, and the percentage of mice with tumours was lowered by 70 or 30%, respectively.  相似文献   
92.
In the current study, we examined the function of N-myc downstream-regulated gene 2 (NDRG2) expression in breast cancer cells, especially focusing on the role of bone morphogenetic protein-4 (BMP-4) induced by NDRG2. NDRG2 expression in MDA-MB-231 cells inhibited the mRNA expression of several matrix metalloproteinases (MMPs) and the gelatinolytic activity of MMP-9. Interestingly, a specific induction of active BMP-4 was exclusively observed in MDA-MB-231-NDRG2 cells but not in MDA-MB-231-mock cells. Neutralization of BMP-4 in MDA-MB-231-NDRG2 cells resulted in the rescue of MMP-9 mRNA expression and migration capacity. In addition, treatment with recombinant BMP-4 dramatically suppressed MMP-9 mRNA expression, gelatinolytic MMP-9 activity, migration, and invasion capacity both in MDA-MB-231 and PMA-treated MCF-7 cells. Collectively, our data show that BMP-4 induced by NDRG2 expression inhibits the metastatic potential of breast cancer cells, especially via suppression of MMP-9 activity.  相似文献   
93.
With the world??s population growing rapidly, pressure is increasing on the limited fresh water resources. Membrane technology could play a vital role in solving the water scarcity issues through alternative sources such as saline water sources and wastewater reclamation. The current generation of membrane technologies, particularly reverse osmosis (RO), has significantly improved in performance. However, RO desalination is still energy intensive and any effort to improve energy efficiency increases total cost of the product water. Since energy, environment and climate change issues are all inter-related, desalination for large-scale irrigation requires new novel technologies that address the energy issues. Forward osmosis (FO) is an emerging membrane technology. However, FO desalination for potable water is still a challenge because, recovery and regeneration of draw solutes require additional processes and energy. This article focuses on the application of FO desalination for non-potable irrigation where maximum water is required. In this concept of fertiliser drawn FO (FDFO) desalination, fertilisers are used as draw solutions (DS). The diluted draw solution after desalination can be directly applied for fertigation without the need for recovery and regeneration of DS. FDFO desalination can make irrigation water available at comparatively lower energy than the current desalination technologies. As a low energy technology, FDFO can be easily powered by renewable energy sources and therefore suitable for inland and remote applications. This article outlines the concept of FDFO desalination and critically evaluates the scope and limitations of this technology for fertigation, including suggestions on options to overcome some of these limitations.  相似文献   
94.
To understand the plant response to oxidative stresses, we studied the influence of magnesium (Mg++) deficiency on the formation of hydrogen peroxide (H2O2), malondialdehyde (MDA), and protease activity in kidney bean plants. The expression pattern of proteins under Mg++ deficiency also was examined via two-dimensional electrophoresis. The formation of H2O2 and MDA increased in the primary leaves of plants grown in a nutrient solution deficient in Mg++. Protease activity in Mg++-deficient plants was also higher than in those grown with sufficient Mg++. The expression pattern of the proteins showed that 25 new proteins were generated and 64 proteins disappeared under Mg++-deficient conditions. Therefore, a deficiency in Mg++ may cause oxidative stress and a change in protein expression. Some of these proteins may be related to the oxidative stress induced by Mg++ deficiency.  相似文献   
95.
Proteins adhere to DNA at locations and with strengths that depend on the protein conformation, the underlying DNA sequence and the ionic content of the solution. A facile technique to probe the positions and strengths of protein-DNA binding would aid in understanding these important interactions. Here, we describe a ‘DNA pulley’ for position-resolved nano-mechanical measurements of protein-DNA interactions. A molecule of λ DNA is tethered by one end to a glass surface, and by the other end to a magnetic bead. The DNA is stretched horizontally by a magnet, and a nanoscale knife made of silicon nitride is manipulated to contact, bend and scan along the DNA. The mechanical profile of the DNA at the contact with the knife is probed via nanometer-precision optical tracking of the magnetic bead. This system enables detection of protein bumps on the DNA and localization of their binding sites. We study theoretically the technical requirements to detect mechanical heterogeneities in the DNA itself.  相似文献   
96.
97.
Macromolecular assemblies play an important role in all cellular processes. While there has recently been significant progress in protein structure prediction based on deep learning, large protein complexes cannot be predicted with these approaches. The integrative structure modeling approach characterizes multi-subunit complexes by computational integration of data from fast and accessible experimental techniques. Crosslinking mass spectrometry is one such technique that provides spatial information about the proximity of crosslinked residues. One of the challenges in interpreting crosslinking datasets is designing a scoring function that, given a structure, can quantify how well it fits the data. Most approaches set an upper bound on the distance between Cα atoms of crosslinked residues and calculate a fraction of satisfied crosslinks. However, the distance spanned by the crosslinker greatly depends on the neighborhood of the crosslinked residues. Here, we design a deep learning model for predicting the optimal distance range for a crosslinked residue pair based on the structures of their neighborhoods. We find that our model can predict the distance range with the area under the receiver-operator curve of 0.86 and 0.7 for intra- and inter-protein crosslinks, respectively. Our deep scoring function can be used in a range of structure modeling applications.  相似文献   
98.
99.
The phospholipid composition of two strains ofBradyrhizobium is reported. In contrast to previous studies [Bunn CR, Elkan GH (1970) Can J Microbiol 17:291–295; and Gerson T, Patel JJ (1975) Appl Microbiol 30:193–198], we determined that phosphatidylglycerol is a major phospholipid within this bacterial genus. Furthermore, neither phosphatidylserine nor phosphatidylinositol was detected within lipid extracts derived from these bacteria. In addition to phosphatidylglycerol, other major phospholipids ofBradyrhizobium were shown to include phosphatidylcholine, phosphatidylethanolamine, and cardiolipin. Possible explanations for the discrepancies between the present study and those of previous investigations are discussed.  相似文献   
100.
Bioprocess and Biosystems Engineering - In this study, to produce adipic acid, mutant strains of Candida tropicalis KCTC 7212 deficient of AOX genes encoding acyl-CoA oxidases which are important...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号